If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+64y-64=0
a = 1; b = 64; c = -64;
Δ = b2-4ac
Δ = 642-4·1·(-64)
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{17}}{2*1}=\frac{-64-16\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{17}}{2*1}=\frac{-64+16\sqrt{17}}{2} $
| 5x+31=6x+10 | | 7(12-x)=28 | | 20x-40x=20 | | 2(x-3)+7=4(x-2)+11 | | 6b=3 | | 6b=36 | | 47=x=21 | | 5(d+2)=3(d-6 | | y^2+16y+y=0 | | w/5-2=-12 | | (2x+8)+(2x+12)=196 | | (2x+8)(2x+12)=196 | | (5x+20)+(9x−92)=180 | | -6(3+6n)-n=-129 | | x+5/6x=3x-14 | | .5(10-25)32=a | | -10-3z=3z+1 | | -x/3+6=18 | | 13=y/4-10 | | 6=8m | | 3(5x-3)=-114 | | 5x12=12x14 | | 1/x+3+1/2x+1=11/7x+9 | | 3(r+1.6(-8r=9.5 | | 12x-2=8x+10 | | 4(3b+2)=-88 | | -0.16n=17 | | 2400-x=150 | | -1/6n=17 | | 5x^2+4=x^2+13 | | 6v^2-10v-84=0 | | -4.9x^2+9.2x+9=0 |